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Solutions to Practice Problems (these are Daniel Larson’s solutions)

1. Griffiths 1.38 The divergence theorem tells us that the integral of the divergence over the volume equals the
integral of the vector field over the surface. So we need to compute two integrals in each case.

(a) ∇ · (r2 r̂) = 1
r2

∂
∂r (r4) = 4r, where I used equation (1.71). Now,

∫
(∇ · v1) dτ =

∫
(4r)r2 dr sin θ dθ dφ =(∫ R

0
4r3 dr

) (∫
dΩ

)
= r4

∣∣R
0

(4π) = 4πR4. On the other hand, on the surface of the sphere, r = R, and so∫
v1 · da =

∫
(R2 r̂) · (R2 sin θ dθ, dφ r̂) = R4

∫
dΩ = 4πR4. The two integrals agree.

(b) ∇· (1/r2) r̂ = 1
r2

∂
∂r (r2 1

r2 ) = 0, so
∫

(∇·v2) dτ = 0. On the other hand, on the surface of a sphere radius R,∫
v2 · da =

∫
( 1

R2 r̂) · (R2dΩ r̂) =
∫
dΩ = 4π. The two integrals don’t agree! The reason is that ∇· v2 = 0

except at the origin, where it becomes infinite. Thus our calculation of
∫

(∇ · v2) dτ is incorrect. We’ll
learn how to fix this using the Dirac delta-function. The correct answer is 4π, whic is what we got the
using the surface integral because that method avoids the problem at the origin.

2. Griffiths 1.46

(a) Since the charge is only at the specific point r′ we will need to use a delta-function. ρ(r) = qδ3(r − r′).
The volume integral is then

∫
ρ(r) dτ = q

∫
δ3(r− r′) dτ = q as it should be.

(b) The electric dipole is just two different point charges at different places. ρ(r) = qδ3(r− a) − qδ3(r).

(c) There is no charge anywhere except where r = R, so ρ(r) = Aδ(r − R). We need to integrate over all
space to find A. Q =

∫
ρ dτ =

∫
Aδ(r −R)4πr2 dr = A4πR2. So A = Q

4πR2 . Thus ρ(r) = Q
4πR2 δ(r −R).

3. Griffiths 2.6 The first thing to notice is that any horizontal components of the electric field will cancel because
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Figure 1: Problem 7.

of the symmetry of the disk. So the resulting electric field will be in the ẑ direction. Then we just need to
add up the contributions of the z-components due to every point on the disk. For a generic point on the disk
located at a distance r from the center, the distance to the point P is

√
r2 + z2. Thus the z-component of the

E field at P due to that point is 1
4πε0

dq
r2+z2 cos θ where θ is the angle between the line connecting P with the

center of the disk and the line connecting P with the generic element of charge on the disk (see Fig. 1). So we
see cos θ = z√

r2+z2 . To get the total E-field at P we need to add up these contributions for every little element
of charge on the disk. The amount of charge in a small area element is dq = σrdrdφ. Thus

E =
∫ R

0

∫ 2π

0

1
4πε0

zσrdr dφ

(r2 + z2)3/2
ẑ =

2πzσ
4πε0

∫ R

0

rdr

(r2 + z2)3/2
ẑ

=
2πzσ
4πε0

[
−(r2 + z2)−1/2

]R

0
ẑ =

zσ

2ε0

[
1
z
− 1√

R2 + z2

]
ẑ.
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Finally, it is always good to check the limiting cases of your results. For R → ∞ the second term vanishes and
we’re left with σ/2ε0 which is the electic field due to an infinite sheet of charge. For z � R at first glance the
two terms in brackets cancel, so we’d get zero, which is true, but not so informative. To get a more precise
estimate of how the field falls off for large z we need to expand the square root.

1√
R2 + z2

=
[
z2

(
1 +

R2

z2

)]−1/2

=
1
z

(
1 − R2

2z2
+ O

(
R4

z4

))

Since z � R, we can ignore the R4/z4 piece. Plugging the expansion back into the formula for the electric
field, we find E → σπR2

4πε0z2 which is the field a distance z away from a point charge with Q = σπR2.

4. Griffiths 2.18 First we need the electric field inside a uniformly charged sphere. Imagining a spherical Gaussian
surface of radius r inside the charged sphere, symmetry tells us that the electric field must be pointing radially
outward and have the same magnitude over the whole surface. So

∫
E(r)· da = 4πr2E(r) = Qenc/ε0 = ρ4πr3/3.

Thus E(r) = ρr/(3ε0) r̂ = ρr/(3ε0) r where r is the unit vector from the center of the charged sphere to the
point in question.

In this problem we have two charged spheres with the vector d pointing from the center of the positive sphere
to the center of the negative sphere. For a point P in the region of overlap, there will be a contribution to the
E-field from both spheres. If we let r+ be the vector from the center of the positive sphere to P and r− be the
vector from the center of the negative sphere to P , then the total E-field at P is

E = E+ + E− =
ρ

3ε0
r+ +

−ρ

3ε0
r− =

ρ

3ε0
(r+ − r−).

But from the figure, we see that r+ − r− = d. So the total electric field in the overlap region is E = ρ/3ε0 d.

r+

r−

+ρ

−ρ

P

d

Problem 1

5. Griffiths 2.36 (a-c)

(a) For each of the cavities, we may imagine a Gaussian surface that is completely in the conductor and
surrounds the cavity. Since there is no electric field in the metal of the conductor,

∫
E · da = 0. By

Gauss’s Law this means that the charge enclosed must be zero, so the total charge on the inner surface
of the cavity must be exactly opposite of the point charge contained in the cavity. By symmetry, there
is no reason for the surface charge to be anything but uniformly distributed. Thus σa = qa/4πa2 and
σb = qb/4πb2. Since the conductor is neutral, the charge on the outer surface must be opposite the charge
on the inner surface, and again it will be uniformly distributed, so σR = (qa + qb)/4πR2.

(b) To find the field outside the conductor, the argument is exactly the same as in Example 2.9 in the text.
The conductor makes the electric field outside look exactly like two point charges qa and qb at the origin.

So E =
1

4πε0
qa + qb

r2
r̂, where r̂ is a unit vector from the center of the conducting sphere.

(c) The surface charge in cavity a cancels the electric field due to the point charge qa everywhere outside
the cavity. So the only source of electric field in cavity a is the point charge qa and the surface charge.
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But using Gauss’s Law and the spherical symmetry, the electric field inside the cavity is just that of the

point charge qa, namely Ea =
1

4πε0
qa

r2
a

r̂a, where ra is a unit vector from the center of cavity a. The same

reasoning applies to cavity b, so Eb =
1

4πε0
qb

r2
b

r̂b.

6. Griffiths 3.6 The xy plane is a grounded conductor, so it is at zero potential. We can reproduce this situation
by considering a similar setup without the conductor, but instead with a charge +2q at z = −d and a charge
−q at z = −3d. These image charges make the potential V = 0 anywhere in the xy plane, so it exactly matches
the boundary conditions in the original problem with the conductor. The force on the charge +q is then given
by Coulomb’s Law:

F =
1

4πε0

(
(q)(−q)
(6d)2

+
(q)(2q)
(4d)2

+
(q)(−2q)

(2d)2

)
ẑ =

1
4πε0

(
29q2

72d2

)
ẑ.

7. Griffiths 4.15

(a)

ρb = −∇·P = − 1
r2

∂

∂r

(
r2 k

r

)
= − k

r2
; σb = P · n̂ =

{
P · r̂ = k/b (at r = b),

P · (− r̂) = −k/a (at r = a).

The spherical symmetry again tells us that E is radial. Thus E = 1
4πε0

Qenc
r2 r̂ in all three regions. For

a gaussian surface with r < a there is no charge enclosed, so E(r < a) = 0. For a < r < b the charge
enclosed is

(−k
a

)
4πa2 +

∫ r

a

(−k
r′2

)
4πr′2 dr′ = −4πka− 4πk(r − a) = −4πkr, so E(a < r < b) = −(k/ε0r) r̂.

Finally, for r > b the charge inclosed is the same as in the previous calculation (with r = b) plus the
surface charge at r = b. So Qenc = −4πkb + 4πb2(k/b) = 0, thus E(r > b) = 0.

(b) The spherical symmetry tells us D must be radial, so
∫
D · da = 4πr2D(r) at some radius r. But since

there is no free charge anywhere, we must have bfd = 0 everywhere. Since ε0E = D − P = −P, since
P = 0 both inside and outside the shell, E = 0 both outside and inside the shell. Within the shell,
E = −P/ε0 = −(k/ε0r) r̂. This agrees with part (a) and was far quicker.

8. Griffiths 4.18 Choose coordinates so that the capacitor is in the xy-plane and ẑ points “up” from the
negatively charged plate towards the positively charged plate. Let’s start this problem by thinking physically
about what will happen. There is free charge placed on the top and bottom plates, which will produce some
electric field pointing down. (We will assume the capacitor is big enough in the xy-directions so that the
electric field will be only in the z-direction.) But that electric field will polarize the two dielectrics, producing
P pointing in the same direction as E, which in turn induces positive bound surface charge on the bottoms
of each dielectric surface and negative bound charge on the top of each dielectric surface. These collections
of bound charge will also produce their own electric field, which we also need to take into account. Now let’s
work through the details.

(a) The D field depends only on the free charge, so with +σ on the top plate and −σ on the bottom plate,
the D field in between the plates will be D = σ(− ẑ), which is the D field between two infinite planes
with free surface charges ±σ. It has the same value in each of the slabs.

(b) Since we’re dealing with linear dielectrics, D = ε0εrE. However, εr is different in the two slabs. Thus in
slab 1, E1 = D/ε0ε

(1)
r = −σ/2ε0 ẑ, and in slab 2, E2 = D/ε0ε

(2)
r = −σ/1.5ε0 ẑ = −2σ/3ε0 ẑ.

(c) In a linear dielectric, P = ε0(εr − 1)E, so in slab 1 we have P1 = ε0(2 − 1)E1 = −σ/2 ẑ and in slab 2 we
have P2 = ε0(1.5 − 1)E2 = −σ/3 ẑ.

(d) We find the potential difference by integrating E · d between the two plates. Since E is uniform in each
of the slabs, and points straight down, we get V = E1a + E2a = 7aσ/6ε0.

3



(e) ρb = −∇ · P = 0 in both slabs. σb = P · n̂, so remembering that n̂ always points out of each slab,
σ

(1)
b = +σ/2 at the bottom of slab 1 and minus that at the top of slab 1. σ

(2)
b = +σ/3 at the bottom of

slab 2 and minus that at the top. See the figure below.

(f) Using all of the charges, we want to recalculate the electric field in each slab. All of the charges are surface
charges distributed on (approximately) infinite planes of charge, so we use the result that the electric field
due to a single plane of surface charge doesn’t depend on the distance from the plane. Inside slab 1 it is
as if there was a single plane on top with net surface charge equal to the free charge on the top capacitor
plate plus the bound charge on the top of slab 1, namely σ−σ/2 = σ/2; and also a single plane below with
net surface charge dues to the bound charge on the bottom of slab 1, the top of slab 2, and the bottom of
slab 2, and the free charge on the bottom capacitor plate, namely σ/2−σ/3 +σ/3−σ = −σ/2. So inside
slab 1 the electric field is the same as between two infinite plates with surface charge ±σ/2, so E1 = σ/2ε0
(pointing down). Similarly, inside slab 2 there is net surface charge σ − σ/2 + σ/2 − σ/3 = 2σ/3 above
and σ/3 − σ = −2σ/3 below. So the electric field in slab 2 is E2 = 2σ/3ε0, again pointing down.

Slab 1

Slab 2

+σ

−σ/2
+σ/2

−σ/3
+σ/3

−σ

Problem 8. Griffiths 3.18
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